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Abstract

Groove guide, one of several low-loss wave-
guides proposed some years ago for use at milli-

mete r wavelengths, is again receiving attention in

the literature. A new transverse equivalent net-

work and dispersion relation for the properties of

the dominant mode are presented here which are

extremely simple in form and yet very accurate.

Comparisons with accurate published measure-

ments indicate better agreement with this new

theory than with any previous theory.

A. INTRODUCTION

Groove guide is one of a group of low-loss
waveguiding structures proposed some years ago

for use at millimeter wavelengths. Results for

the propagation characteristics of the dominant
mode in groove guide have been published pre-

viously. There exist theoretical expressions
which are simple but approximate, more accurate

expressions which involve infinite sums and are
mess y to compute from, and careful measured

results. We present here a new exp ression for

the propagation constant of groove guide, which is

very accurate, yet in closed form and simple. The

microwave network approach used in the derivation

of the new expression is summarized, and then

comparisons are made with previously published
theoretical and experimental results. It will be

seen that the new expression provides excellent

agreement with measurement, and in fact better

agreement than with any previous theoretical data.

The motivation for obtaining an improved ex-

pression for the propagation constant of groove
guide, and in the process a transverse equivalent

network which is simple and whose constituents

are all in closed form, is that groove guide ap-
pears to be an excellent low-loss waveguide upon
which can be based a number of novel leaky-wave
antennas for the millimeter wavelength range.

The results of this paper then form an important

step in the analysis of such antennas. One anten-
na in this class has been described recently [ 1, Z].

The cross section of groove guide is shown

in Fig. 1, and an indication of the dominant mode

electric field lines present in its cross section is

given in Fig. 2(a). One should first note that the
structure resembles that of rectangular waveguide
with most of its top and bottom walls removed.

The groove guide can therefore be excited by

providing a smooth tapered transition between it

and a feed rectangular waveguide. Furthermore,

if symmetry is maintained, many components can
be designed for groove guide which are analogues

of those in rectangular guide.

The greater width in the middle, or central,

region was shown by T. Nakahara [ 3-5], the in-

ventor of groove guide, to serve as the mechanism

that confines the field in the vertical direction,

much as the dielectric central region does in H

guide. The field thus decays exponentially away
from the central region in the narrower regions

above and below, as shown in Fig. Z(b). If the
narrower regions are sufficiently long, it does not

matter if they remain open or are closed off at the

ends.

The theoretical approach to the propagation
constant of the dominant mode taken by most of

the previous inveetigators has been to produce
a first-order result by taking only the dominant

transverse mode in each region of the cross sec-

tion, and then obtaining the dispersion relation on

use of the transverse resonance condition. That
procedure, which neglects the presence of all

higher transverse modes, is equivalent to account-

ing for the step junction between the central and

outer regions by employing a transformer only,

and by ignoring the junction susceptance entirely.

With that approximation, a simple dispersion re-

lation is obtained, which produces reasonably good

agreement with measured data when the step dis-

continuity is small. More accurate theoretical

phrasings were presented in some references by

accounting for the susceptance by taking an infinite
number of higher modes on each side of the step

junction and then mode matching at the junction.

The resulting expressions involve matrices which,

even after the necessary truncation, are messy to
compute from. When only one or two higher modes

are included, the improvement in accuracy is
quite small and the added complexity in calculation

is substantial.

The approach in this paper is to establish a

proper transverse equivalent network, identify
the appropriate transverse mode (which is hybrid),
obtain an accurate expression in closed form for

the step junction sus ceptance, and then apply the

transverse resonance condition to the now-complete

transverse equivalent network, which yields the
relevant dispersion relation for the propagation

constant. This dispersion relation is simple, in
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closed form, and very accurate, as demonstrated

by comparison with measured data from references

4and5.

B. THE TRANSVERSE EQUIVALENT NETWORK

The complete transverse equivalent network
for the groove guide is derived by starting with a

proper phrasing of the problem and then by putting

together all the cons tituent elements. The essen-
tial new constituent in the transverse equivalent
network is a simple closed form expression for the
step junction susceptance.

To begin with, however, we must identify the

correct mode in the y direction (see Fig. 2). We

first note that with respect to the z (longitudinal)

direction the overall guided mode is a TE (or H)

mode; that is, there exists only a component of

H in the z direction. This result is to be ex-

pected since the groove guide consists of a per-

fectly conducting outer structure filled with only
a single dielectric material (air). In the y direc-

tion, however, there exist both Ey and H com-
ponents, so that the mode is hybrid in th& direc-

tion.

Since the groove guide is uniform in the z
direction, an d its field has only an Hz component,

the hybrid mode in the y di~ection is seen to be

what is called by some an H-type mode with re-

spect to the z direction, and by others an LSE

mode with respect to the z direction. We prefer

the former notation, an d we shall designate the

mode in the y direction as an H(z )-typ e mode.
Altschuler and Goldstone [ 6] discuss such modes
in detail and present the field components for

them and the characteristic admittances for trans-

mission lines representative of them. For this
mode, we find that the characteristic admittance

is giv-en by

where ky is the

mis sion line.

(1)

propagation constant of the trans -

The step junction is a 10S sless asymmetric
discontinuity, and it therefore requires three real

quantities for its characterization. It has been

found by experience, however, that for most situa-

tions the network conveniently reduces to a shunt

network comprised of a shunt susceptance B and

a transformer with turns ratio n.

Employing the mode functions for the H (z)-

type mode mentioned above, the turns ratio n can

be derived in the usual manner to yield

To our knowledge, an expression for the shunt

susceptance for the step junction subject to the
excitation shown in Fig. 2(a) is not available in the

literature, By a simple additional step, however,

we can adapt an available, but not widely known,

result to our discontinuity of interest.

The available result is a symmetric discon-

tinuity which is contained in Vol. 8 of the MIT

Radiation Laboratory Series [ 7] and is presented
there as an illustration of how Babinet’s principle
may be used creatively. That result, combined
with appropriate stored power considerations, per-

mits us to obtain the following result for the step

junction dis continuity sus ceptance:

B
—=0.55k ~cot’$$
Y

o YTf
(3)

The resulting transverse equivalent network
becomes that shown in Fig. 3, where bisection

has been employed , and where the network has

been placed horizontally for convenience. The ex-

pressions for parameters B, n and Y. (and there-

fore Y:) are given respectively by (3), (2), and

( 1). The form of the network and the expressions

for its constituents are seen to be eminently simple,

and yet they characterize the structure very accu-

rately.

Once the network in Fig. 3 becomes available,
the determination of the dispersion relation for the

lowest mode becomes an essentially trivial task.

By applying the transverse resonance condition,

we obtain

1 ‘+ky 0.55cotk ‘=7
2a

y’
n Ik_’1

~ cot 2*’ (4)

The early first-order solution derived by vari-

ous authors corresponds precisely to the first two

terms in ( 4). The third term in (4) represents a

particularly simple and convenient way to take into

account the influence of all the higher modes, which

the first-order solution admittedly neglects .

c. NUMERICAL RESULTS: COMPARISON WITH

MEASUREMENTS

We next verify the accuracy of these new theo-
retical results, as embodied in dispersion relation

(4) and the simple transverse equivalent network

shown in Fig. 3. Toward this end, we present
now a comparison between our theoretical numbers

and the careful exp erimental results of Nakahara

and Kurauchi [ 4, 5] (referred to below as N-K).

In Fig. 9 of reference 5 and Fig. 10 of refer-

ence 4, N-K present the results of careful mea-
surements on a variety of groove guides. The y
give the measured values of Xc as a function of

at for groove guides of different cross sections,

and they show how these values compare with

curves obtained using first-order theory. All of
those data, plus our theoretical numbers, are con-

tained in Figs . 4(a) and 4(b) presented here; the
first-order theory is represented by dashed lines,
our more accurate theory by solid lines , and the

measured data as discrete points. The cross sec-
tions corresponding to each set of curves are
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shown as insets.

It is seen that our theoretical curves agree

very well with the measured values in almost all

cases . On the other hand, the first-order theo-

retical values are systematically somewhat be-

low both our theory and the measured data. It ap-

pears, therefore, that the first-order theory re -
presents a rather good approximation, considering

its simplicity, and that the new theory using (4)

is indeed significantly more accurate.
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The electric field of the dominant mode

in open groove guide. (a) A sketch of the
electric field lines in the cross section,

(b) An approximate plot of the vertical
component Ey as a function of y, showing
that the guided mode is bound transversely

to the central grooved region.

Complete transverse equivalent network
J

for o-pen groove guide, for the excitation

indicated in Fig. 2(a).
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Comparisons between measured and theo-

retical values of the cutoff wavelength x c
for groove guides of various cross sections.

The solid li~es represent our improved

theory, the dashed curves are the first-

order theoretical values, and the points
are the measured results of N-K [ 4, 5] .

The insets indicate the cross-sectional

geometries for each measured point, where
the numbers are in cm.

Fig. 1. The open groove guide.
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